The Primitives and Antipode in the Hopf Algebra of Symmetric Functions in Noncommuting Variables

نویسندگان

  • AARON LAUVE
  • Marcelo Aguiar
چکیده

We identify a collection of primitive elements generating the Hopf algebra NCSym of symmetric functions in noncommuting variables and give a combinatorial formula for the antipode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antipode Formulas for some Combinatorial Hopf Algebras

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bial...

متن کامل

Hopf algebras and characters of classical groups

Abstract. Schur functions provide an integral basis of the ring of symmetric functions. It is shown that this ring has a natural Hopf algebra structure by identifying the appropriate product, coproduct, unit, counit and antipode, and their properties. Characters of covariant tensor irreducible representations of the classical groups GL(n), O(n) and Sp(n) are then expressed in terms of Schur fun...

متن کامل

Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables

We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions which was recently studied as a vector space by Rosas and Sagan [12]. The bases for this algebra are indexed by set partitions. We show that there exist a natural inclusion of the Hopf algebra of noncommutative symmetric functions studied in [17] in this larger space. We also consider this algebra a...

متن کامل

Structure of the Malvenuto-reutenauer Hopf Algebra of Permutations

We analyze the structure of the Malvenuto-Reutenauer Hopf algebraSSym of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the...

متن کامل

The primitives of the Hopf algebra of noncommutative symmetric functions

Let NSymm be the Hopf algebra of noncommutative symmetric functions over the integers. In this paper a description is given of its Lie algebra of primitives over the integers, Prim(NSymm), in terms of recursion formulas. For each of the primitives of a basis of Prim(NSymm), indexed by Lyndon words, there is a recursively given divided power series over it. This gives another proof of the theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010